Generic Dantzig-Wolfe Reformulation of Mixed Integer Programs
نویسندگان
چکیده
Dantzig-Wolfe decomposition (or reformulation) is well-known to provide strong dual bounds for specially structured mixed integer programs (MIPs) in practice. However, the method is not implemented in any state-of-the-art MIP solver as it is considered to require structural problem knowledge and tailoring to this structure. We provide a computational proof-of-concept that the process can be automated. In particular the detection (better: the construction) of a matrix structure that is useful for Dantzig-Wolfe reformulation of a MIP can be accomplished by suitably permuting rows and columns. We experiment with general instances from MIPLIB2003 and MIPLIB2010 for which a decomposition method would not be the first choice, and demonstrate that strong dual bounds can be obtained from the reformulated problem exploiting column generation. Our results support that Dantzig-Wolfe reformulation may hold more promise as a generalpurpose tool than previously acknowledged by the research community.
منابع مشابه
Automatic Decomposition and Branch-and-Price - A Status Report
We provide an overview of our recent efforts to automatize Dantzig-Wolfe reformulation and column generation/branch-and-price for structured, large-scale integer programs. We present the need for and the benefits from a generic implementation which does not need any user input or expert knowledge. A focus is on detecting structures in integer programs which are amenable to a Dantzig-Wolfe refor...
متن کاملAutomatic Dantzig-Wolfe reformulation of mixed integer programs
Dantzig-Wolfe decomposition (or reformulation) is well-known to provide strong dual bounds for specially structured mixed integer programs (MIPs). However, the method is not implemented in any state-of-the-art MIP solver as it is considered to require structural problem knowledge and tailoring to this structure. We provide a computational proof-of-concept that the reformulation can be automated...
متن کاملReformulation and Decomposition of Integer Programs
We examine ways to reformulate integer and mixed integer programs. Typically, but not exclusively, one reformulates so as to obtain stronger linear programming relaxations, and hence better bounds for use in a branch-and-bound based algorithm. First we cover reformulations based on decomposition, such as Lagrangean relaxation, the Dantzig-Wolfe reformulation and the resulting column generation ...
متن کاملPartial Convexification of General MIPs by Dantzig-Wolfe Reformulation
Dantzig-Wolfe decomposition is well-known to provide strong dual bounds for specially structured mixed integer programs (MIPs) in practice. However, the method is not implemented in any state-of-the-art MIP solver: it needs tailoring to the particular problem; the decomposition must be determined from the typical bordered block-diagonal matrix structure; the resulting column generation subprobl...
متن کاملSolving the Temporal Knapsack Problem via Recursive Dantzig-Wolfe Reformulation
The Temporal Knapsack Problem (TKP) is a generalization of the standard Knapsack Problem where a time horizon is considered, and each item consumes the knapsack capacity during a limited time interval only. In this paper we solve the TKP using what we call a Recursive Dantzig-Wolfe Reformulation (DWR) method. The generic idea of Recursive DWR is to solve a Mixed Integer Program (MIP) by recursi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011